M Effect of Missing Value Methods on Bayesian Network Classification of Hepatitis Data

نویسندگان

  • Nazziwa Aisha
  • Mohd Bakri Adam
  • Shamarina Shohaimi
چکیده

Missing value imputation methods are widely used in solving missing value problems during statistical analysis. For classification tasks, these imputation methods can affect the accuracy of the Bayesian network classifiers. This paper study’s the effect of missing value treatment on the prediction accuracy of four Bayesian network classifiers used to predict death in acute chronic Hepatitis patients. Missing data was imputed using nine methods which include, replacing with most common attribute, support vector machine imputation (SVMI), K-nearest neighbor (KNNI), Fuzzy K-means Clustering (FKMI), K-means Clustering Imputation (KMI), Weighted imputation with K-Nearest Neighbor (WKNNI), regularized expectation maximization (EM), singular value decomposition (SVDI), and local least squares imputation (LLSI). The classification accuracy of the naive Bayes (NB), tree augmented naive Bayes (TAN), boosted augmented naive Bayes (BAN) and general Bayes network classifiers (GBN) were recorded. The SVMI and LLSI methods improved the classification accuracy of the classifiers. The method of ignoring missing values was better than seven of the imputation methods. Among the classifiers, the TAN achieved the best average classification accuracy of 86.3% followed by BAN with 85.1%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Patients’ Gender on Parkinson’s disease using Classification Algorithms

In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson’s disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C par...

متن کامل

‎A Bayesian mixture model‎ for classification of certain and uncertain data

‎There are different types of classification methods for classifying the certain data‎. ‎All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data‎. ‎In recent years‎, ‎by assuming the distribution of the uncertain data is normal‎, ‎there are several estimation for the mean and variance of this distribution‎. ‎In this paper‎, ‎we co...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

مقایسه روش بیزی (Bayesian) و کلاسیک در برآرد پارامترهای مدل رگرسیون لجستیک با وجود مقادیر گمشده در متغیرهای کمکی

Background and Aim: Logistic regression is an analytic tool widely used in medical and epidemiologic research. In many studies, we face data sets in which some of the data are not recorded. A simple way to deal with such "missing data" is to simply ignore the subjects with missing observations, and perform the analysis on cases for which complete data are available. Materials and Methods: We c...

متن کامل

Missing-value estimation using linear and non-linear regression with Bayesian gene selection

MOTIVATION Data from microarray experiments are usually in the form of large matrices of expression levels of genes under different experimental conditions. Owing to various reasons, there are frequently missing values. Estimating these missing values is important because they affect downstream analysis, such as clustering, classification and network design. Several methods of missing-value est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013